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Optimization of Zone Refining by Variable Oscillation
of the Container

K. D. WOLTER, P. L. CARELLA, G. A. MOEBUS,
and J. F. JOHNSON

INSTITUTE OF MATERIALS SCIENCE
UNIVERSITY OF CONNECTICUT
STORRS, CONNECTICUT 06268

Abstract

A zone refining apparatus able to provide a wide range of rotation and
oscillation programs is presented, and its utility in determining the conditions
for most efficient separation is demonstrated.

INTRODUCTION

Zone refining is a powerful method for obtaining highly pure materials.
Several comprehensive texts describing it and allied techniques are
available (/, 2). While inorganic materials have been the most common
substrates, a sizable body of literature discusses applications involving
organic materials (3).

The efficiency of the process (4) is of prime concern to the user and has
been treated by a number of workers. For example, Gouw and Jentoft
(5) have evaluated the efficiencies of normal freezing, column crystalliza-
tion, and zone melting. Pospisil (6) has attempted to formulate a method
for predicting the optimum rate of zone travel. Kirgintsev and Avvakumov
(7) have evaluated the efficiency of zone refining of fused salt systems in
terms of the rate of crystallization, while Konovalov and Peizulaev (8)
have presented a method for calculating the optimum conditions for the
concentration of impurities in bismuth. Optimization with respect to the
overall economics of the process has been treated by Kirgintsev and
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Pyl'neva (9). Operating conditions can have a dramatic effect upon the
separation. It is well known that stirring the molten zone will improve
the separation by decreasing 6, the thickness of the diffusion layer. Yoshida
et al. (/0) and Avramenko et al. (//) have clearly demonstrated that zone
refining processes can be optimized with respect to this operating variable,
In this report a zone refining apparatus will be described which makes use
of recent advances in integrated circuit technology in order to provide a
very wide range of oscillation programs. The time between reversal of
rotation at which the separation is most effective will likely depend upon
the characteristics of the particular system. Using a very simply derived
criterion for efficiency, the utility of this device will be demonstrated.
Additionally, a method for obtaining a useful first approximation to the
optimal zone travel rate will be described. The model system used was
acetanilide containing approximately 0.01 9 methyl violet.

EXPERIMENTAL

Description of Apparatus

The basic circuitry of the zone refiner is depicted in Fig. 1. The device
can accommodate four tubes and has four ovens, in sequence, for each
tube. The table on which the ovens and cooling rings are mounted is driven
by a threaded rod which is attached to a transmission gear assembly. As
a pass is completed, the table reverse microswitch is tripped and an
electromagnet (a) shifts the transmission gears so that the direction of
table motion is reversed, and (b) increases the table transport motor speed.
The table will then hit a backstop, return the microswitch to its original
position, and begin a new pass. A toggle switch on the panel allows the
operator to select either single pass or continuous operation.

The oscillation control logic is depicted in Fig. 2. The four rod holders
are connected by a toothed belt to the stepping motor (Superior Electric,
Bristol, Connecticut). The STM 10! stepping motor control (Superior
Electric) accepts digital pulses from the logic circuit and emits pulses com-
patible with the stepping motor. Using the selector switch on the panel,
the operator can select continuous rotation, oscillation, or stationary
modes. A stepping motor rotates in discrete steps, each step being equiv-
alent to 1.8°. Speed is specified in steps per second. Two 10-turn poten-
tiometers are provided for this purpose, one to specify clockwise speed
and the other counterclockwise speed. The Datel V/F 10 KIC chip (Datel
Corp., Mansfield, Massachusetts) provides the memory required for
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oscillation. Two sets of thumbwheels, each 0-9999, determine the number
of steps the rods will rotate in each direction. The Datel chip counts the
steps, determines when the preset maximum has occurred, and then
reverses direction. Thus a wide variety of oscillation programs can be
obtained by varying both the speed and duration of rotation separately
for each direction.

Materials and Methods

Acetanilide (979%,; Aldrich Chemical Co., Milwaukee, Wisconsin) was
twice recrystallized from water and stored under vacuum. Methyl violet
(indicator grade) was dissolved in molten acetanilide to form a 0.01%
(by weight) solution. Pyrex glass tubes (4 mm) were passed through a
flame in order to evaporate adsorbed water and thereby reduce bubble
formation, and the molten acetanilide solution was drawn into the tubes.
The molten zone length was kept constant at 1.0 cm. For each stirring
mode, several runs were made at each of two zone travel rates, 4.65 and
12.0 cm/hr. When the oscillation program was such that the tube made
less than a full turn before reversal, the zone refiner was set so that the
clockwise period was very slightly greater than the counterclockwise so as
to compensate for any thermal variations. Rotation speed was maintained
at 1000 steps per second. After one zone pass, each tube was analyzed
spectrophotometrically at 580 nm. The effective distribution coefficient,
k., was determined using (12)

= =1—(1 = ke k=l €))
Co
where C, is solute concentration at distance x, C, is the original solute
concentration, and / is molten zone length. This equation was rearranged
to give a form more convenient for plotting:

C, k.x
ln( —a;)=ln(1—ke)—- ] )

RESULTS AND DISCUSSION

Values for the effective distribution coefficient, k,, were obtained for
a range of oscillation programs at two zone travel rates, 4.65 and 12.0
cm/hr. The reciprocal of k, can be taken as one measure of the effectiveness
of the separation, and this term has been plotted vs 7, the time between
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reversal of rotation, in Fig. 3. It is clear that the best separation is achieved
when ¢ = 0.03 sec. This graph, however, does not give any basis for
comparing the results at the two zone travel rates.

A simple method to calculate efficiency will be described here that is
applicable to the single pass zone refining of a semi-infinite rod. For a
given experiment, where k, and zone travel rate, f, are known, the efficiency
will be defined as the amount of material produced for which the ratio
C/C, is at or below a certain value, P, the desired purity, divided by the
amount of time required to produce it. Here it is assumed that &, and P
are always less than unity. The “amount of material” will be represented
by the shaded area in Fig. 4. Rearranging Eq. (1) and substituting our
chosen value of P for C/C,, we get Eq. (3) and a value for x':

x' = =(k)In[(1 = P)/(1 — k,)] (€)

If we integrate Eq. (1) with respect to x, evaluate between x' and zero,
subtract the result from x', and also subtract the area above the P line,
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Fi1G. 3. 1/k. vs time between reversal of rotation for two zone travel rates.
Top: 4.65 cm/hr. Bottom: 12.0 cm/hr.
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/o
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F1G. 4. Hypothetical C,/C, vs distance after one zone pass.

equal to (1 — P)x’, we get Eq. (4) which describes the shaded area:

1 - k) ,
Area = (P — D)x’ + (—-T—e-)—[l — e kex'7]] 4)
Finally, dividing Eq. (4) by time, equivalent tc x'/f, we obtain an expres-
sion for efficiency as a function of k, and f:
1 - k) ,
Efficiency = (P — 1) + (—k—x,ezz[l — e kel
Values for the efficiency at the two zone travel rates were calculated
using Eq. (5) and plotted vs ¢, as shown in Fig. 5. This graph gives more
useful information than that in Fig. 3. Not only does it show that ¢ =
0.03 sec is most effective for this system, but also that it is more than twice
as efficient to run at f = 12.0 cm/hr than at f = 4.65 cm/hr. The optimum
zone travel rate could be found by plotting £ vs /. This would require that
k. be known as a function of £. Burton et al. (/3) related &, to f by means
of two constants: k,, the equilibrium interfacial distribution coefficient,
and 6/D, the diffusion layer thickness over the diffusion constant:

ke = 11 + (1/ko — 1)e™ %] ©

&)
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Fic. 5. Efficiency vs time between reversal of rotation for two zone travel
rates. Top: 4.65 cm/hr. Bottom: 12.0 cm/hr.

If this equation was strictly valid, k, and §/D could be calculated using
k, values obtained at two zone travel rates under the same oscillation
conditions. Then one could obtain k,, and by Eq. (5) get E for any zone
travel rate, easily finding the optimum rate. Kirwan (/4-17) has shown,
however, that above a critical crystallization rate the planar interface
breaks down to a cellular or dendritic interface, resulting in the trapping
of impurity-rich liquid droplets. Then k4 in Eq. (6) must be replaced by
an apparent interfacial distribution coefficient, k,, where for organic

systems
koD
_ 1 _ g2l kD
ko =14, [mcL(oo)f} @

where A4, is a constant, m is the liquidus slope, C;(c0) is the impurity con-
centration in the bulk of the liquid, and the other terms have been pre-
viously defined. While the occurrence of interfacial breakdown precludes
an exact mathematical solution for the optimum rate, a very useful first
approximation to this quantity can be obtained using Eq. (6) by the
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TABLE |
Approximate Optimum Rate Values for Selected Oscillation Conditions
Time between reversal Approximate optimum
of rotation (sec) rate (cm/hr)

0 5.5
0.010 16.4
0.030 18.6
0.050 16.9
0.080 9.2

o0 6.2

procedure outlined above. The approximate optimum rate values cal-
culated are given in Table 1. One would expect that the actual optimum
rates would be somewhat lower than these first approximations due to
the occurrence of impurity trapping.

In summary, this device has been found to be very useful in determining
the optimum oscillation conditions and in obtaining an approximation to
the optimum zone travel rate. The numerical values found are very likely
valid only for the particular system at hand, and this general procedure
would have to be carried out in order to determine the optimum con-
ditions for other separations.
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