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Optimization of Zone Refining by Variable Oscillation 
of the Container 

K. D. WOLTER, P. L. CARELLA, G. A. MOEBUS, 
and J. F. JlOHNSON 
INSTITUTE OF MATERIALS SCIENCE 

UNIVERSITY OF CONNECTICUT 
STORRS, CONNICTICUT 06268 

Abstract 

A zone refining apparatus able to provide a wide range of rotation and 
oscillation programs is presented, and its utility in determining the conditions 
for most efficient separation is demonstrated. 

INTRODUCTION 

Zone refining is a powerful method for obtaining highly pure materials. 
Several coniprehensive texts describing it and allied techniques are 
available (l, ,  2). While inorganic materials have been the most common 
substrates, a sizable body of literature discusses applications involving 
organic materials (3). 

The efficiency of the process (4) is of prime concern to the user and has 
been treated by a number of workers. For example, Gouw and Jentoft 
(5) have evatluated the efficiencies of normal freezing, column crystalliza- 
tion, and zone melting. Pospisil (6) has attempted to formulate a method 
for predicting the optimum rate of zone travel. Kirgintsev and Avvakumov 
(7) have evaluated the efficiency of zone refining of fused salt systems in 
terms of thie rate of crystallization, while Konovalov and Peizulaev (8) 
have presented a method for calculating the optimum conditions for the 
concentration of impurities in bismuth. Optimization with respect to the 
overall ecoiiomics of the process has been treated by Kirgintsev and 
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Pyl'neva (9). Operating conditions can have a dramatic effect upon the 
separation. It is well known that stirring the molten zone will improve 
the separation by decreasing 6, the thickness of the diffusion layer. Yoshida 
et al. (IO) and Avramenko et al. ( I ! )  have clearly demonstrated that zone 
refining processes can be optimized with respect to this operating variable. 
In this report a zone refining apparatus will be described which makes use 
of recent advances in integrated circuit technology in order to provide a 
very wide range of oscillation programs. The time between reversal of 
rotation at which the separation is most effective will likely depend upon 
the characteristics of the particular system. Using a very simply derived 
criterion for efficiency, the utility of this device will be demonstrated. 
Additionally, a method for obtaining a useful first approximation to the 
optimal zone travel rate will be described. The model system used was 
acetanilide containing approximately 0.01 % methyl violet. 

EXPE RI M E N  TAL 

Description of Apparatus 

The basic circuitry of the zone refiner is depicted in Fig. 1. The device 
can accommodate four tubes and has four ovens, in sequence, for each 
tube. The table on which the ovens and cooling rings are mounted is driven 
by a threaded rod which is attached to a transmission gear assembly, As 
a pass is completed, the table reverse microswitch is tripped and an 
electromagnet (a) shifts the transmission gears so that the direction of 
table motion is reversed, and (b) increases the table transport motor speed. 
The table will then hit a backstop, return the microswitch to its original 
position, and begin a new pass. A toggle switch on the panel allows the 
operator to select either single pass or continuous operation. 

The oscillation control logic is depicted in Fig. 2. The four rod holders 
are connected by a toothed belt to the stepping motor (Superior Electric, 
Bristol, Connecticut). The STM 101 stepping motor control (Superior 
Electric) accepts digital pulses from the logic circuit and emits pulses com- 
patible with the stepping motor. Using the selector switch on the panel, 
the operator can select continuous rotation, oscillation, or stationary 
modes. A stepping motor rotates in discrete steps, each step being equiv- 
alent to 1.8". Speed is specified in steps per second. Two 10-turn poten- 
tiometers are provided for this purpose, one to specify clockwise speed 
and the other counterclockwise speed. The Datel V/F 10 KIC chip (Datel 
Corp., Mansfield, Massachusetts) provides the memory required for 
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oscillation. Two sets of thumbwheels, each 0-9999, determine the number 
of steps the rods will rotate in each direction. The Date1 chip counts the 
steps, determines when the preset maximum has occurred, and then 
reverses direction. Thus a wide variety of oscillation programs can be 
obtained by varying both the speed and duration of rotation separately 
for each direction. 

Materials and Methods 

Acetanilide: (97 % ; Aldrich Chemical Co., Milwaukee, Wisconsin) was 
twice recrystallized from water and stored under vacuum. Methyl violet 
(indicator grade) was dissolved in molten acetanilide to form a 0.01 % 
(by weight) solution. Pyrex glass tubes (4mm) were passed through a 
flame in order to evaporate adsorbed water and thereby reduce bubble 
formation, and the molten acetanilide solution was drawn into the tubes. 
The molten zone length was kept constant at 1.0 cm. For each stirring 
mode, several runs were made at each of two zone travel rates, 4.65 and 
12.0cm/hr. When the oscillation program was such that the tube made 
less than a full turn before reversal, the zone refiner was set so that the 
clockwise period was very slightly greater than the counterclockwise so as 
to compensate for any thermal variations. Rotation speed was maintained 
at 1000 steps per second. After one zone pass, each tube was analyzed 
spectrophotometrically at 580 nm. The effective distribution coefficient, 
ke, was determined using (12) 

where C, is ;solute concentration at distance x ,  Co is the original solute 
concentration, and I is molten zone length. This equation was rearranged 
to give a form more convenient for plotting: 

RESULTS AND D I S C U S S I O N  

Values for the effective distribution coefficient, k,, were obtained for 
a range of oscillation programs at  two zone travel rates, 4.65 and 12.0 
cm/hr. The reciprocal of k, can be taken as one measure of the effectiveness 
of the separation, and this term has been plotted vs t, the time between 
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reversal of rotation, in Fig. 3. It is clear that the best separation is achieved 
when t = 0.03 sec. This graph, however, does not give any basis for 
comparing the results at the two zone travel rates. 

A simple method to calculate efficiency will be described here that is 
applicable to the single pass zone refining of a semi-infinite rod. For a 
given experiment, where k ,  and zone travel rate,f, are known, the efficiency 
will be defined as the amount of material produced for which the ratio 
CjC, is at or below a certain value, P, the desired purity, divided by the 
amount of time required to produce it. Here it is assumed that k ,  and P 
are always less than unity. The “amount of material” will be represented 
by the shaded area in Fig. 4. Rearranging Eq. (1) and substituting our 
chosen value of P for C/Co, we get Eq. (3) and a value for x’: 

x’ = -(l/k,) In [(l - P)/(1 - k,)] (3) 
If we integrate Eq. (1) with respect to x, evaluate between x’ and zero, 
subtract the result from x‘, and also subtract the area above the P line, 

FIG. 3. Ilk, vs time between reversal of rotation for two zone travel rates. 
Top: 4.65 crn/hr. Bottom: 12.0cm/hr. 
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I 

X’ 
X (DISTANCE) 

F k .  4. Hypothetical CJC, vs distance after one zone pass. 

equal to (1 -- P)x’ ,  we get Eq. (4) which describes the shaded area: 

Finally, dividing Eq. (4) by time, equivalent to x’K we obtain an expres- 
sion for efficiency as a function of k, and f: 

Values for the efficiency at the two zone travel rates were calculated 
using Eq. (5) and plotted vs t ,  as shown in Fig. 5. This graph gives more 
useful inforimation than that in Fig. 3. Not only does it show that t = 
0.03 sec is most effective for this system, but also that it is more than twice 
as efficient tlo run atf  = 12.0 cm/hr than atf = 4.65 cm/hr. The optimum 
zone travel rate could be found by plotting E vsf: This would require that 
k, be known as a function off. Burton et al. (13) related k, to fby  means 
of two constants : k,, the equilibrium interfacial distribution coefficient, 
and S / D ,  the diffusion layer thickness over the diffusion constant: 

k, = 1/[1 + (l/ko - l)e-fa’’] (6) 
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0.70 

0.20 

0,lO 

FIG. 5 .  Efficiency vs time between reversal of rotation for two zone travel 
rates. Top: 4.65 cm/hr. Bottom: 12.0 cm/hr. 

If this equation was strictly valid, k, and S/D could be calculated using 
k, values obtained at two zone travel rates under the same oscillation 
conditions. Then one could obtain k,, and by Eq. (5) get E for any zone 
travel rate, easily finding the optimum rate. Kirwan (14-17) has shown, 
however, that above a critical crystallization rate the planar interface 
breaks down to a cellular or dendritic interface, resulting in the trapping 
of impurity-rich liquid droplets. Then k, in Eq. (6 )  must be replaced by 
an apparent interfacial distribution coefficient, k,, where for organic 
systems 

where A ,  is a constant, rn is the liquidus slope, C,(oo) is the impurity con- 
centration in the bulk of the liquid, and the other terms have been pre- 
viously defined. While the occurrence of interfacial breakdown precludes 
an exact mathematical solution for the optimum rate, a very useful first 
approximation to this quantity can be obtained using Eq. (6)  by the 
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TABLE 1 
Approximate Optimum Rate Values for Selected Oscillation Conditions 

~ ~~ ~ 

Time between reversal Approximate optimum 
of rotation (sec) rate (cm/hr) 

0 5.5 
0.010 16.4 
0.030 18.6 
0.050 16.9 
0.080 9.2 

03 6.2 

procedure outlined above. The approximate optimum rate values cal- 
culated are giiven in Table l .  One would expect that the actual optimum 
rates would be somewhat lower than these first approximations due to 
the occurrence of impurity trapping. 

In summary, this device has been found to be very useful in determining 
the optimum oscillation conditions and in obtaining an approximation to 
the optimum zone travel rate. The numerical values found are very likely 
valid only for the particular system at hand, and this general procedure 
would have lo be carried out in order to determine the optimum con- 
ditions for other separations. 
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